
ARTICLE

Cornering the universal shape of fluctuations
Benoit Estienne 1✉, Jean-Marie Stéphan 2✉ & William Witczak-Krempa 3,4,5✉

Understanding the fluctuations of observables is one of the main goals in science, be it

theoretical or experimental, quantum or classical. We investigate such fluctuations in a

subregion of the full system, focusing on geometries with sharp corners. We report that the

angle dependence is super-universal: up to a numerical prefactor, this function does not

depend on anything, provided the system under study is uniform, isotropic, and correlations

do not decay too slowly. The prefactor contains important physical information: we show in

particular that it gives access to the long-wavelength limit of the structure factor. We

exemplify our findings with fractional quantum Hall states, topological insulators, scale

invariant quantum critical theories, and metals. We suggest experimental tests, and antici-

pate that our findings can be generalized to other spatial dimensions or geometries. In

addition, we highlight the similarities of the fluctuation shape dependence with findings

relating to quantum entanglement measures.

https://doi.org/10.1038/s41467-021-27727-1 OPEN

1 Sorbonne Université, CNRS, Laboratoire de Physique Théorique et Hautes Énergies, LPTHE, F-75005 Paris, France. 2 Univ Lyon, CNRS, Université Claude
Bernard Lyon 1, UMR5208, Institut Camille Jordan, F-69622 Villeurbanne, France. 3 Département de Physique, Université de Montréal, Montréal, QC H3C
3J7, Canada. 4 Centre de Recherches Mathématiques, Université de Montréal, P.O. Box 6128, Centre-ville Station, Montréal, QC H3C 3J7, Canada.
5 Regroupement Québécois sur les Matériaux de Pointe (RQMP), Montreal, QC, Canada. ✉email: estienne@lpthe.jussieu.fr; stephan@math.univ-lyon1.fr;
w.witczak-krempa@umontreal.ca

NATURE COMMUNICATIONS |          (2022) 13:287 | https://doi.org/10.1038/s41467-021-27727-1 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27727-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27727-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27727-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27727-1&domain=pdf
http://orcid.org/0000-0003-2316-9661
http://orcid.org/0000-0003-2316-9661
http://orcid.org/0000-0003-2316-9661
http://orcid.org/0000-0003-2316-9661
http://orcid.org/0000-0003-2316-9661
http://orcid.org/0000-0002-4859-4472
http://orcid.org/0000-0002-4859-4472
http://orcid.org/0000-0002-4859-4472
http://orcid.org/0000-0002-4859-4472
http://orcid.org/0000-0002-4859-4472
http://orcid.org/0000-0003-2350-2583
http://orcid.org/0000-0003-2350-2583
http://orcid.org/0000-0003-2350-2583
http://orcid.org/0000-0003-2350-2583
http://orcid.org/0000-0003-2350-2583
mailto:estienne@lpthe.jussieu.fr
mailto:stephan@math.univ-lyon1.fr
mailto:w.witczak-krempa@umontreal.ca
www.nature.com/naturecommunications
www.nature.com/naturecommunications


In quantum mechanics, measurements on identically prepared
systems of an observable O will generally yield different out-
comes. This is a consequence of the fact that the state of the

system is in a quantum superposition of states having well-
defined values of O. The spread of the outcomes, ignoring
experimental errors, can be quantified by the variance, or
uncertainty squared in the quantum language,
ðΔOÞ2 ¼ hðO� hOiÞ2i. Heuristically, we say that ΔO measures
the fluctuations of O. Similar fluctuations also occur in classical
many-body systems, where the statistical description leads to
fluctuations of observables. In numerous experiments, like scan-
ning tunneling microscopy, one only measures a small subregion
of a sample. In that case, a natural question arises: What are the
fluctuations of a given observable in a subregion A? This refine-
ment introduces additional information: the shape of the sub-
region. It thus seems that one is left with a huge amount of
possibilities corresponding to different quantum or classical
states, observables, and shapes, and thus little hope to find uni-
fying principles1–3. In this work, we show that there exists a large,
and experimentally relevant, set of states and observables that
share the same universal shape dependence for their fluctuations.

Let us consider a local scalar observable, written in the con-
tinuum as ρ(r). It could be the number of bacteria per unit area,
the charge density, the energy density, the local magnetization,
etc. The fluctuations of ρ within a subregion A are described by
ΔOA, where OA ¼ R

Adr ρðrÞ is the integrated density in the
subregion:

ðΔOAÞ2 ¼ hO2
Ai � hOAi2 ¼

Z
A
dr
Z

A
dr0hρðrÞρðr0Þic ð1Þ

with the connected correlation function
hρðrÞρðr0Þic ¼ hρðrÞρðr0Þi � hρðrÞihρðr0Þi. The expectation value is
taken either with respect to a classical distribution, or a quantum
density matrix. We will now focus on a uniform and isotropic
systems, for which the above correlation function only depends
on the distance separating the two positions
hρðrÞρðr0Þic ¼ f ðjr� r0jÞ, yielding

ðΔOAÞ2 ¼
Z

A
dr
Z

A
dr0 f ðjr� r0jÞ : ð2Þ

The function f can be very different depending on the system and
choice of observable and is generally not known for realistic
models. From general principles, fluctuations of most physical
systems behave for large regions A as4

ðΔOAÞ2 ¼ αjAj þ βj∂Aj � bA þ � � � : ð3Þ

The first term is a standard volume law, scaling with the size of A,
while the second term is an area law scaling with the size of its
boundary ∂A, bA the dominant subleading term, and the ellipses
denote weaker terms, in particular those that vanish in the
thermodynamic limit. The prefactors α and β do not depend
on the shape of region A, and they can be explicitly computed in
terms of the correlation function f (see Supplementary Note 1).
The subleading term bA is more interesting: it carries the
non-trivial shape dependence of the fluctuations and probes the
large-scale properties of the system. In particular, if A has sharp
corners, each one contributes to bA. These corner contributions
are encoded in a function b(θ), θ being the corner opening angle.
The case of a simple planar corner in two dimensions is illu-
strated in Fig. 1.

In this work, we report that the angle-dependence b(θ) of the
fluctuations is in fact completely independent of the observable
and of the system considered, up to a numerical prefactor.

Namely

bðθÞ ¼ � 1þ ðπ � θÞ cot θð Þ
Z 1

0

r3

2
f ðrÞ dr ð4Þ

as long as the system is translation invariant and isotropic, and
the correlation function f decays sufficiently fast at large r, as
discussed below. We emphasize that the aforementioned
assumptions have considerable generality: they hold for a wide
class of classical and quantum systems, at zero or finite tem-
perature. A typical example would be that of a liquid, where in
addition to translational invariance and isotropy, f decays expo-
nentially fast. We test our super-universal result with various
systems. We first consider fractional quantum Hall systems,
where even the prefactor of the corner term is universal and
proportional to the Hall conductivity. This example can also be
interpreted as a classical (liquid) particle system with 2d Coulomb
repulsion via the plasma analogy. We then examine quantum
critical scale-invariant theories, for which the corner function
diverges logarithmically: the prefactor is also universal in that
case, but has a different physical origin. It is proportional to the
longitudinal conductivity. We next investigate the case of metals,
which breaks our assumptions and shows different behavior.
Finally, we present large-scale quantum Monte Carlo results for
the corner contribution to the entanglement entropy of an FQH
ground state, which provides new support for the connection
between quantum entanglement and fluctuations5–7.

Results
Strikingly, the simple angle dependence factorizes and is inde-
pendent of the correlation function f. Before we provide the
derivation of this result and present several non-trivial tests, it is
worthwhile to pause and examine the angular function in Eq. (4),
uðθÞ ¼ 1þ ðπ � θÞ cot θ, which we call the corner fluctuation
function. It is plotted in Fig. 2 (left). Due to the appearance of the
cotangent, cot θ ¼ cos θ

sin θ, it diverges as 1/θ when the angle
approaches zero. The increase at small angles is natural given that
the region is becoming thinner, which leads to stronger long-
range fluctuations. In the opposite limit of θ ≈ π, it vanishes
quadratically as (θ−π)2.

The prefactor of the corner fluctuation function, that is the
radial integral in Eq. (4), is also meaningful and holds interesting
physical information. This coefficient can be measured experi-
mentally, as it is directly related to the long-wavelength limit of
the static structure factor, which can be accessed via elastic
scattering experiments, for example. We shall treat various
examples below. The reader may remark that the integral is free
from large-scale divergence provided f decays faster than 1/r4.
When the decay is precisely 1/r4, one obtains a logarithmic
divergence with the size of region A, as we shall explain when we
treat scale-invariant quantum critical systems. However, in

Fig. 1 Corner geometry. Left: Subregion A is highlighted in red. The electron
distribution is a typical Monte Carlo sample obtained from the topological
fractional quantum Hall ground state at filling ν= 1/3. Right: The regions
that are used in the substraction procedure for canceling out the boundary
law, and isolating the corner contribution.
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certain situations, the decay is even slower, and we will obtain a
new scaling.

The corner fluctuation function has previously appeared in
several contexts, for example in renormalization studies of Wilson
loops in gauge theories8,9, in the study of entanglement
entropy5,10,11, in bipartite fluctuations of non-interacting Dirac
systems7 and the integer quantum Hall effect12, and in the study
of disorder operators in two-dimensional conformal field
theories13,14. Our findings illuminate its physical origin in a large
class of classical and quantum systems and explain why it has
appeared in these seemingly unrelated contexts.

In order to evaluate the corner contribution b(θ), we consider
for region A a single corner of opening angle θ, as illustrated in
Fig. 1 (left). First, we must isolate the subleading corner con-
tribution from the volume and boundary terms. The volume law
is easy to take care of. Its origin can be traced back to the fluc-
tuations of the total integrated density O ¼ R

VdrρðrÞ. Indeed,
unless O is conserved, its variance is extensive with the total
system size V, with a density of fluctuations (see e.g. ref. 4)
α ¼ ðΔOÞ2=V ¼ R

drhρðrÞρð0Þic. Straightforward manipulations
lead to

ðΔOAÞ2 ¼ αjAj �
Z

A
dr
Z

Ac
dr0 f ðjr� r0jÞ ð5Þ

where Ac denotes the complement of region A. This takes care of
the volume term, the second term in the r.h.s. being governed by
an area law provided f decays sufficiently fast to zero. In particular,
if O does not fluctuate, the volume contribution vanishes. This is
for example the case for ground states of local Hamiltonians that
respect the symmetry corresponding to O. In the appropriate
temperature regime, the fluctuations of OA then mainly occur due
to the motion of the local charge in the immediate vicinity of
the boundary, leading to a boundary law. It is important to
emphasize that boundary law can also dominate in a variety of
contexts beyond the low-temperature limit, such as in certain
excited states. Care must be taken at finite temperature in the
canonical ensemble. In this case, α will vanish but the function
f will not decay to zero, resulting in a separate volume term. This
can be easily seen at infinite temperature, where correlations do
not quite vanish due to the constraint on particle number in the
whole system. In contrast, α is the only possible volume law
contribution in the grand-canonical ensemble.

We next have to cancel out the boundary term in the second
term in Eq. (5), which we call ΘA. To do so we consider a sub-
traction scheme based on a four-corner geometry, as illustrated in
Fig. 1 (right). Because the subregions A, B, C and D have an
infinite boundary, the quantities ΘA,ΘB,… are also infinite. But
these boundary contributions cancel out in the following linear

combination, leaving only the subleading angle-dependent cor-
rection:
bðθÞ ¼ 1

2 ðΘAB þ ΘAD � ΘA � ΘCÞ ¼ �R
Bdr

R
Ddr

0f ðjr� r0jÞ.
This integral is evaluated in Supplementary Note 2, where an
alternative derivation, not relying on a substraction procedure, is
also presented. Both methods lead to the universal corner fluc-
tuation function (4). As long as the correlation function f(r)
decays fast enough at long distances, the radial integral in Eq. (4)
is convergent. This is guaranteed for example, but not exclusively,
for gapped states. This integral can generally be measured
experimentally as it is directly related to the long-wavelength
limit of the static structure factor S(k)= ∫eik−r〈ρ(r)ρ(0)〉c dr
associated to the observable O:

Sðk ! 0Þ ¼ Sð0Þ � πk2
Z 1

0

r3

2
f ðrÞ dr ð6Þ

Note also that S(0)= α gives the coefficient of the volume term.
This is natural, as bipartite fluctuations over large regions can
probe the long-wavelength limit of the static structure factor15.

We now test the super-universal shape dependence in a variety
of systems, starting with quantum Hall states, and topological
insulators.

Fractional quantum Hall liquids. Two-dimensional classical
liquids and gapped quantum phases provide a broad and natural
class of systems for which our results directly apply. In addition
to being homogeneous and isotropic, their correlation function
f(r) typically decays exponentially. An interesting example is
provided by fractional quantum Hall states. These states are
topological phases of electrons moving in two dimensions at low
temperatures under the influence of a strong transverse magnetic
field. They host anyon quasiparticles that are neither fermions
nor bosons and support gapless chiral edge modes. We will study
their charge fluctuations. It is known16–19 that for incompressible
phases, the static structure factor takes the following form at small
wavevectors: Sðk ! 0Þ ¼ l2Bk

2hρi=2, where lB is the magnetic
length and hρi ¼ ν=2πl2B is the electron density. The filling frac-
tion ν gives the number of electrons per quantum of magnetic
flux. Using this result (also called a sum rule) allows us to write
the full corner term:

bνðθÞ ¼
ν

4π2
1þ ðπ � θÞ cot θð Þ ¼ jσxyj

2π
1þ ðπ � θÞ cot θð Þ : ð7Þ

In the last equality, we have related the filling fraction to the Hall
conductivity in natural units, e= ℏ= 1. For the integer quantum
Hall effect at ν= 1, this was previously derived12. But in fact,

Fig. 2 Charge fluctuations in fractional quantum Hall states. Monte Carlo (MC) extraction of the corner term bν for several filling fractions ν. Left: ν
−1bν(θ) for N= 48 particles and filling fractions ν= 1, 1/2, 1/3. The collapse onto a single curve is nearly perfect. Right: Illustration of the finite-size effects
for ν= 1/2, 1/3, by plotting bν(θ)/b1(θ) for an increasing number of particles. The curves become constant for large N. The slight discrepancy for small θ is
a finite size effect: for such small angles, there are very few particles in A, unless N is extremely large. Note also the increase of the error bars when θ
becomes close to π. This is an artifact of the fact that bν vanishes in that limit: while absolute error bars (of statistical origin, as described in the “Methods”
section) are still very small, relative errors blow up.
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Eq. (7) is valid for general incompressible interacting ground-
states, including abelian and non-abelian topological states.

Let us illustrate this general result with the example of the
Laughlin state, written in first quantization as

Ψðz1; ¼ ; zN Þ ¼
Y

1≤ i<j≤N

ðzi � zjÞ1=νe�
1
4∑

N
i¼1 jzij2 ; ð8Þ

for integer values of 1/ν. The coordinate zj= xj+ iyj of the jth
electron is expressed as a complex number, and lengths are
measured in terms of the magnetic length. This state is a seminal
example of a fractional quantum Hall fluid. For 1/ν ≥ 2 it has
intrinsic topological order giving rise to abelian anyon quasi-
particles, while ν= 1 describes the non-interacting integer
quantum Hall effect. For large N, the particles lie in a droplet
of radius

ffiffiffiffiffiffiffiffiffiffiffi
2N=ν

p
. In the bulk, the particle density is uniform,

with exponentially decaying correlations. The conducting edge
excitations are described by a chiral conformal field theory. Since
quantum Hall states are gapped, fluctuation of particle numbers
in region A are expected to obey an area law. For the integer
quantum Hall effect, this is rigorously established20, while for the
fractional case this area law has been confirmed numerically21.
Furthermore, in the non-interacting case, the connected two-
point function is known exactly so the integral (4) can be readily
computed, confirming the result (7) (see Supplementary Note 3).
However, such an elementary derivation is not viable in the
interacting case, since the two-point function f(r) is not known,
and besides the ones we are using, only a few sum rules are
known (e.g. refs. 22–27).

We check the corner function (4) using Monte Carlo
simulations in order to sample the many-body wavefunction
(8). We work with filling fractions ν= 1/3 and 1/2, which
correspond to topologically ordered ground states for fermions,
and bosons, respectively. We compute the particle variance in a
given subregion, with the only complication being that simulation
time can become large to have sufficient precision on the
variance. Data shown in this section are typically averaged over
several billion samples. Another complication comes from the
edge of the droplet, which hosts gapless chiral modes.
Fortunately, the contribution from these modes is known exactly
and has been shown12 to decouple from the corner contribution,
so we can easily substract it (see the “Methods” section). For a
sufficiently large particle number, the corner contribution bν(θ) is
given by (4), as shown in Fig. 2, confirming our arguments to
high precision.

Our discussion of fluctuations in topological states has so far
been limited to systems that break time-reversal. However,
similar results will hold for non-chiral states. For instance, let us
consider a model wavefunction for a fractional topological
insulator28, which consists of two decoupled FQH states, formed
by spin up and down electrons with Hall conductivities of
opposite signs. To be concrete, this could be realized by putting
each spin species in a Laughlin state with a filling fraction of 1/3.
Due to the decoupling of the up and down spins, the charge
variance is simply twice that of a single Laughlin state. Indeed, the
charge variance is invariant under time reversal. This is why it is
really the absolute value of the Hall conductivity that appears in
(7). We thus find that the first equality in Eq. (7) for the universal
shape dependence holds, but with the replacement ν→ 2ν. The
second equality should also be modified for this family of non-
chiral topological insulators since σxy vanishes: the prefactor is
now proportional to the spin Hall conductivity.

We close this section by mentioning that we have verified that
the super-universal shape dependence also holds for an infinite
family of excited, and thermal quantum Hall states. Let us first
consider excited states at unit filling by entirely occupying only

the nth Landau level, with n > 0, and leaving all other levels empty
(see Supplementary Note 3). We find that those states obey the
angle dependence Eq. (4), but with ν in the prefactor replaced by
2n+ 1. We thus see that for excited states, the prefactor is no
longer simply given by the filling. It is expected that the charge
fluctuations increase with the energy of the excited state. It would
be interesting to understand the prefactor for other uniform
excited states.

We now consider the integer quantum Hall effect at a finite
temperature T and chemical potential μ. The corresponding
correlation function f(r) still decays exponentially at large
distances, which ensures that the charge fluctuations obey the
super-universal shape dependence (4). By evaluating the prefactor
at small temperatures, we find that it remains unchanged up to
corrections that are exponentially small in the ratio of the
cyclotron energy to twice the thermal energy, ℏωc/(2kBT). As the
temperature increases towards the cyclotron scale and beyond,
the prefactor varies in a non-trivial way, which can be
determined; we provide additional information in Supplementary
Note 3.

Scale-invariant quantum critical theories. After having studied
gapped topological phases, we now turn to a large family of
gapless systems: quantum critical phases and phase transitions.
We shall focus on systems with emergent Lorentz and scale
invariance, which in the majority of cases combine to an even
larger conformal symmetry. The gapless Dirac cones of graphene
or the quantum critical transition between an insulator and
superfluid at integer filling constitute key examples29. Further-
more, the symmetries of the overarching conformal field theory
impose the large distance behavior for the correlation function of
a conserved global charge to be f(r)=−CJ/r4 30. CJ is a positive
constant that gives the universal ground state longitudinal con-
ductivity in natural units, σ= π2CJ/2, of the associated conserved
current. For such systems, the variance of a conserved charge
obeys a strict area law (Supplementary Note 4). To find the
subleading correction, we substitute this f into Eq. (4) and get

bðθÞ ¼ σ

π2
1þ ðπ � θÞ cot θð Þ log ðj∂Aj=δÞ : ð9Þ

The result grows logarithmically with the perimeter of A; we have
introduced a short-distance cutoff, δ. This scaling with the peri-
meter is in contrast to the constant b(θ) for gapped systems. We
note that the prefactor of the logarithm is entirely universal since
it is not polluted by microscopic details (here represented by the
cutoff δ). We stress that the expression (9) holds for any con-
formal field theory, irrespective of how strongly correlated it is.
Interestingly, whereas the universal Hall conductivity appeared in
the corner fluctuations of quantum Hall groundstates Eq. (7), the
above equation features the universal longitudinal conductivity,
illustrating that universality can arise from different origins. In
the specific case of non-interacting Dirac fermions, Eq. (9) was
previously obtained7.

Let us consider a different observable that is present in all
CFTs, namely the energy density. The conformal symmetry
constrains the two-point function to be f(r)= 2CT/(3r6)30, where
CT is a positive coefficient that depends on the theory. As the f
function decays sufficiently rapidly at large distances, using Eq.
(4) we obtain a corner term with the super-universal angle
dependence, with a prefactor that is constant with respect to the
size of region A, in contrast to what was found above for a global
charge (9). Another difference with Eq. (9) is that the prefactor is
no longer universal as it depends on microscopic information
(the short-distance cutoff). In fact, we can consider infinitely
many other observables, in which case the correlation function f
scales as 1/r2Δ, where Δ is the scaling dimension of the
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observable. As long as Δ ≥ 2, we obtain the super universal
fluctuation function (9), with a prefactor that depends on the
microscopic details unless Δ= 2. This later case shows the
importance of global symmetries in the study of bipartite
fluctuations. In conformal quantum critical theories, there exists
a small number of observables with Δ < 2, and the corresponding
correlation functions decay more slowly at large distances.
Interestingly, a slow decay also occurs for charge fluctuations in
metals. As we discuss next, this leads to a qualitatively distinct
geometrical dependence for the fluctuations.

Metals. As the last example, we study fluctuations in metals.
These have more mobile excitations at low energies compared to
the quantum critical theories described above. For example, a
two-dimensional metal with a circular Fermi surface has an entire
Fermi line worth of gapless points in momentum space, whereas
Dirac semimetals only have a finite number of discrete gap-
closing points. As such, it is not surprising that metals have
stronger charge fluctuations than scale-invariant critical systems.
For regular metals, called Fermi-liquids, the dominant contribu-
tion to the charge fluctuations has a logarithmic enhancement
compared to the boundary law, j∂Ajln j∂Aj, with a prefactor
which is known analytically31,32. This enhancement is related to
the fact that f(r) decays slower than for charge fluctuations of
CFTs at large separations, namely as 1/r3. This has further
important consequences as we now discuss.

For subsystem A, it is convenient to take a circular sector with
radius L and opening angle θ. As stated before, the dominant
term is a logarithmically enhanced boundary law. We identified
the first subleading correction, which is proportional to L. It is
given by

bðθÞ ¼ L bFLðθÞ ð10Þ

where an explicit formula for bFL is given in Supplementary
Note 5. It is different from the super-universal corner function
discussed above. We stress that this term depends on the full
geometry of A, as well as the shape of the Fermi surface. As such
it becomes a full geometric term, rather than a simple corner
term. Such behavior is related to the long-range decay of the
correlation function, which blurs the notion of locality necessary
to define a corner contribution. In particular, there is no reason
for it to vanish at θ= π, and be symmetric under θ→ 2π−θ, as
before. We show in Supplementary Note 5 that this is true only
up to an additive contribution, which is affine in θ. The function
bFL does nevertheless contain interesting information. For
example at small angles, bFL diverges logarithmically instead of
the previous 1/θ scaling, which further illustrates the difference
with the super-universal corner function studied in this paper.

It would be interesting to investigate how much of this picture
changes for non-Fermi-liquids, such as the fermionic half-filled
Landau level33, which can have a different decay of charge
correlations.

Fluctuations and entanglement. One motivation of the present
study is the connection between bipartite fluctuations and
quantum entanglement that is emerging from various
directions4,7,15,31. Indeed, the corner fluctuation function behaves
almost identically as the entanglement entropy of various systems
including scale-invariant quantum critical points, non-interacting
Dirac fermions, integer quantum Hall groundstates, and super-
symmetric gauge theories dual to certain string theories5,6,34,35.
The entanglement entropy36 captures the amount of uncertainty
for any measurement spatially localized to a subregion of the
system and is dominated by quantum entanglement at low
temperature. However, due to the difficulty in studying the

entanglement entropy in the many-body setting, the universality
of the fluctuation-entanglement connection remains unclear. For
example, the corner dependence of the entanglement entropy in
gapped interacting systems has never been computed. Here, we
use large-scale Monte Carlo simulations to compute the second
Rényi entropy S2 for the gapped FQH state at filling ν= 1/2
discussed above. Monte Carlo simulations of entanglement
entropies are computationally much more expensive, but can
nevertheless be carried out using the swap method37. The
resulting shape dependence of both quantities is shown in Fig. 3:
close agreement is observed for a large range of angles. Note that
both quantities have been normalized so that they behave as (θ
−π)2 as θ→ π. Moreover, they show the same asymptotic
behavior in 1/θ for small angles. It would be desirable to study the
entanglement-fluctuation connection in other systems and to
shed light on its origin.

We note that a distinct connection between the entanglement
entropy and local observables exists for certain quantum critical
points possessing a purely spatial conformal symmetry38. There,
the entanglement entropy of a subregion is given by the free
energy (not fluctuations) of another classical two-dimensional
theory defined on the subregion and its complement39. The
corresponding entanglement corner function38, although differ-
ent, behaves similarly to the super-universal fluctuation function
described in the present paper.

Discussion
We have seen how the shape of fluctuations of an observable ρ(r)
in a subregion with corners becomes super universal, i.e. it takes
the same form for a very large class of unrelated systems. In fact,
the systems could be classical or quantum. We have theoretically
tested our result using quantum Hall states, both fractional and
integer, topological insulators, and scale-invariant quantum cri-
tical theories. It would be interesting to further test this super-
universality in the laboratory. On the classical front, one could
study the number fluctuations of colloidal particles at a two-
dimensional interface (such as air/water). It should be possible to
use microscopy to determine the shape dependence of the particle
variance for subregions with varying corner angles. On the
quantum front, a natural testbed would be ultracold atomic gases
loaded in an optical lattice. Using various shapes of subregions
one would be able to probe the atom number variance in phases
like the Mott insulator or at the superfluid-to-insulator (con-
formal) quantum critical point40,41.

Fig. 3 Comparing the shape dependence of fluctuations and
entanglement. Corner contribution s2(θ) to the second entanglement Rényi
entropy for quantum Hall states as a function of the subregion’s corner
angle, obtained using Monte Carlo simulations at fillings ν= 1 and 1/2 with
N= 64 particles. The solid orange line corresponds to the super-universal
fluctuation function, Eq. (4). All curves have been normalized to the unit
second derivative at θ= π. As in the case of fluctuations, the boundary law
contribution has been removed. The error bars are of statistical origin, as
described in the “Methods” section.
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Our analysis was mainly in two dimensions, but such super-
universality is bound to occur in higher dimensions as well. We
give one concrete example in three dimensions: take subregion A
to be a solid cone of opening angle θ, i.e. a 2d corner rotated
about its axis of symmetry. For simplicity, let us consider the
variance of a conserved charge in scale-invariant quantum critical
theories described by a CFT, such as a three-dimensional Dirac
semimetal. In these CFTs, the symmetry enforces the connected
correlation function to scale as 1/r6. Mapping the fluctuation
calculation to the one for the entanglement entropy42 of a special
model (Supplementary Material), we find that all such quantum
critical theories will receive a correction that scales as
cos2ðθ=2Þ
sinðθ=2Þ ðlog j∂AjÞ2, with the prefactor being given by the universal
groundstate conductivity of the system. This result is thus very
similar to what we have obtained in two dimensions, Eq. (9). This
universal cone fluctuation function agrees with the specific
example of Dirac fermions in three dimensions7, and holds for
arbitrary CFTs. We conjecture that it will arise in the fluctuations
of many other systems. Interestingly, the cone function is the
same one (up to a prefactor) that characterizes the entanglement
entropy of conical subregions in general CFTs43. It would be of
interest to further investigate the universality of this result and to
also examine other geometries, such as trihedral corners
appearing in polyhedra-like cubes or tetrahedra.

Finally, we have seen that the fluctuations offer a unique
window into the intricate realm of quantum entanglement, but
with the advantage of being much simpler to obtain both theo-
retically and experimentally. Our work raises the important
question: Why do these distinct quantities, computed in a large
variety of systems, obey nearly the same shape dependence?
Insights regarding this question will help us understand the
super-universal structure that emerges in many-body systems.

Methods
We provide more details on the numerical extraction of the corner term in the
fractional quantum Hall effect. The main complication stems from the fact that the
pair correlation function is not quite a translational invariant for large but still
finite N. It is in the bulk of the droplet, but there are non-trivial power-law
correlations at the edge. This edge behavior is well known to be described by a
chiral CFT44, and results in an extra contribution to the charge fluctuations12.
Fortunately, this contribution decouples from the corner term, since correlations
decay exponentially fast in the bulk.

In our geometry with opening angle θ, the charge fluctuations are expected to
scale as

ðΔNθ
AÞ

2 ¼ α0
ffiffiffiffi
N

p
þ ν

2π2
log

ffiffiffiffi
N

p
sin

θ

2

� �
� bνðθÞ þ cstþ ¼ ð11Þ

for the Laughlin state. Neither the area law prefactor α0 nor the last constant
depend on θ. The logarithmic term is typical for a one-dimensional CFT. We note
that the interpretation of the factor ν is slightly different for this term since it is the
Luttinger parameter of the underlying free boson CFT. It is straightforward to
extract the corner term using the above result. Provided N is large enough, we have

bνðθÞ ¼ ðΔNθ
AÞ

2 � ðΔNπ
AÞ2 �

ν

2π2
log sin

θ

2

� �
; ð12Þ

where bν(θ), is given by Eq. (4) with the coefficient obtained in Eq. (7). ðΔNθ
AÞ

2
can

be evaluated numerically using standard Markov chain Monte Carlo techniques,
and from this, we reconstruct the r.h.s. of the previous equation, which is shown in
Fig. 2.

A similar procedure can be implemented to extract the corner contribution to
the entanglement entropy, (see e.g. ref. 12). Numerical evaluation of the second
Rényi entropy can be performed using the swap method, as explained in ref. 37, but
requires more computer effort. This is mainly due to the fact that one cannot
directly access the entropy S2, but rather e�S2 , which is a small number, so typically
requires greater statistics. All error bars were obtained by running several long
independent simulations and computing the standard deviation between the results
of each simulation. The data shown in Fig. 3 corresponds to over 1010 samples—
requiring several CPU-years—with error bars not visible to the eye. Note that we
also checked the stability of the curves with respect to particle number N.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
All numerical codes in this paper are available upon reasonable request to the authors.
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